Bandeau MISTIC

MISTIC

Microbiomes de plantes cultivées et technologies de l'information et de la communication (TIC).

Les sciences du numérique ont un potentiel énorme pour faciliter et accélérer le développement et déploiement d’innovations agroécologiques. Les systèmes de culture agroécologiques subissent de très nombreuses d’interactions biotiques avec des communautés microbiennes complexes : bénéfiques, assurant des fonctions de bio-défense ou nutritionnelles, ou délétères, par notamment des parasites microbiens et pathogènes qui exploitent les ressources de la plante. La diversité et la dynamique de ces interactions dépendent des conditions écologiques, des phénotypes, de leur physiologie, et de l’environnement abiotique. Déchiffrer les liens entre la diversité interspécifique, la structure des communautés et les fonctions biologiques permet de comprendre, maintenir, diagnostiquer et exploiter la dynamique communautaire qui sous-tend la santé d’une culture et son adaptation aux stress environnementaux.

Le projet MISTIC a pour objectif de concevoir de nouveaux outils d’analyse de données multi-omiques et des modèles spatio-temporels multi-échelle de communautés microbiennes dans les cultures. Trois axes de travail principaux sont organisés pour cela :

  • l’analyse métagénome à grande échelle pour étudier les propriétés fonctionnelles des réseaux d’interaction plante-pathogène ;
  • la construction de jumeaux numériques de communautés microbiennes réduites et systèmes plante-microbiome, sous forme de modèles spatio-temporels validés ;
  • utilisation de la culturomique pour concevoir et cultiver des communautés microbiennes servant comme modèles expérimentaux, contrôlés et répétables, de communautés naturelles, pour chaque pathobiont ou symbiont d’intérêt.

La stratégie du projet MISTIC, fondée sur la biologie de système, vise à répondre aux problématiques méthodologiques induits par des applications de biocontrôle en amont et en aval. Les résultats attendus, sous forme de logiciels et outils mathématiques, aideront à cerner les liens entre la structure de communautés microbiennes et la réponse de la plante, identifiant ainsi des déterminants impactant la santé et traits des plantes, permettant de concevoir des idéotypes et associations d’espèces d’intérêt agronomique. Ces nouveaux outils auront comme perspectives des applications translationnelles qui peuvent être testées dans le cadre du grand défi « Biocontrôle et biostimulants » de la stratégie SADEA. Les données acquises dans ce projet constitueront une ressource réutilisable unique pour des scientifiques français : celles et ceux qui développent des méthodes, des applications ou qui représentent les intérêts des porteurs d’enjeux agroécologiques.

Le projet MISTIC regroupe un consortium qui repose sur une forte complémentarité entre INRAE, Inria et l'Institut Sophia Agrobiotech. Les équipes impliquées permettent d’apporter des expertises diversifiées, en informatique, mathématiques et biologie.

Site internet MISTIC

 

MISTIC

 

MISTIC

Thèses

Nicolas Maurice (Inria, GenScale) : Algorithmique des séquences pour la reconstruction de génomes à partir de données métagénomiques complexes.

Sthyve Tatho (INRAE, UMR BioGeCo - Pleiade) : Intégration de données multi-omiques pour l'analyse de la dynamique de communautés microbiennes en santé des plantes.

Post-doctorat

Belliardo Carole (INRAE, UMR 1356 - ISA - GAME) : Assemblage et annotation de génomes à partir de données métagénomiques de sols.

PUBLICATIONS

HAL : Dernières publications

  • [hal-04509395] Revealing the dynamics and mechanisms of bacterial interactions in cheese production with metabolic modelling

    Cheese taste and flavour properties result from complex metabolic processes occurring in microbial communities. A deeper understanding of such mechanisms makes it possible to improve both industrial production processes and end-product quality through the design of microbial consortia. In this work, we caracterise the metabolism of a three-species community consisting of Lactococcus lactis, Lactobacillus plantarum and Propionibacterium freudenreichii during a seven-week cheese production process. Using genome-scale metabolic models and omics data integration, we modeled and calibrated individual dynamics using monoculture experiments, and coupled these models to capture the metabolism of the community. This model accurately predicts the dynamics of the community, enlightening the contribution of each microbial species to organoleptic compound production. Further metabolic exploration revealed additional possible interactions between the bacterial species. This work provides a methodological framework for the prediction of community-wide metabolism and highlights the added value of dynamic metabolic modeling for the comprehension of fermented food processes

    ano.nymous@ccsd.cnrs.fr.invalid (Maxime Lecomte) 18 Mar 2024

    https://hal.inrae.fr/hal-04509395v1
  • [hal-04562266] TANGO models: numerical multi-omics reconciliation of bacterial fermentation in cheese production

    TANGO implements a numerical-based strategy to reconcile multi-omics data and metabolic networks for characterising bacterial fermentation in cheese production carried out by three species : P. freudenreichii, L. lactis and L. plantarum.

    ano.nymous@ccsd.cnrs.fr.invalid (Julie Aubert) 29 Apr 2024

    https://inria.hal.science/hal-04562266v1
  • [hal-04509213] Unlocking the Soil Microbiome: Unraveling Soil Microbial Complexity Using Long-Read Metagenomics

    The soil microbiome remains poorly understood, but unravelling its genetic diversity is essential, given the pivotal functions primarily mediated through their protein arsenal [1]. Although short-read (SR) shotgun metagenomics provided exciting insights into microbiome gene diversity, it failed to deliver comprehensive microbial genome reconstructions. Metagenome-assembled genomes (MAGs) obtained from SR often yield fragmented assemblies and incomplete gene sets (over 90% contigs <1kb and thus unusable for gene prediction) [2]. Using PacBio HiFi sequencing, we obtained long-reads (N50: 6kb) from tunnel culture soil metagenomes, surpassing the contig length of publicly available short-read metagenomes (N50: 1kb) [2]. Even if a substantial part of the reads remain unassembled, we succeeded in reconstructing dozens of MAGs, further enhancing reads contiguity encompassing bacterial, archaeal, and viral genomes from terrestrial environments. HiFi LR sequencing exhibits significant potential in elucidating the complexity of bacterial genome reconstruction. However, several critical considerations remain, such as the comprehensive scope of biodiversity captured by the LR approach compared to deep sequencing with SR. 1. Fierer, N., 2017. Nat Rev Microbiol 2. Belliardo, C., et al., 2022, Scientific Data 9, 311

    ano.nymous@ccsd.cnrs.fr.invalid (Carole Belliardo) 19 Mar 2024

    https://hal.science/hal-04509213v1
  • [hal-04713829] Seed2LP: seed inference in metabolic networks for reverse ecology applications

    A challenging problem in microbiology is to determine nutritional requirements of microorganisms and culture them, especially for the microbial dark matter detected solely with culture-independent methods. The latter foster an increasing amount of genomic sequences that can be explored with reverse ecology approaches to raise hypotheses on the corresponding populations. Building upon genome scale metabolic networks (GSMNs) obtained from genome annotations, metabolic models predict contextualised phenotypes using nutrient information. We developed the tool Seed2LP, addressing the inverse problem of predicting source nutrients, or seeds, from a GSMN and a metabolic objective. The originality of Seed2LP is its hybrid model, combining a scalable and discrete Boolean approximation of metabolic activity, with the numerically accurate flux balance analysis (FBA). Seed inference is highly customisable, with multiple search and solving modes, exploring the search space of external and internal metabolites combinations. Application to a benchmark of 107 curated GSMNs highlights the usefulness of a logic modelling method over a graph-based approach to predict seeds, and the relevance of hybrid solving to satisfy FBA constraints. Focusing on the dependency between metabolism and environment, Seed2LP is a computational support contributing to address the multifactorial challenge of culturing possibly uncultured microorganisms. Seed2LP is available on https://github.com/bioasp/seed2lp.

    ano.nymous@ccsd.cnrs.fr.invalid (Chabname Ghassemi Nedjad) 30 Sep 2024

    https://hal.science/hal-04713829v1
  • [hal-04120888] Modéliser les communautés bactériennes pour mieux comprendre leur fonctionnement.

    De l’intestin aux racines des plantes en passant par l’océan, le rôle des micro-organismes dans les écosystèmes est prépondérant. C’est en décodant leurs séquences génétiques que l’on peut prédire leurs fonctions et construire des modèles prédisant leur comportement ainsi que les interactions susceptibles d’avoir lieu entre les espèces. Ainsi, pour comprendre le fonctionnement des communautés bactériennes qui peuplent tous ces environnements, chercheurs et chercheuses utilisent les séquences d’ADN des bactéries et les combinent à des modèles mathématiques.

    ano.nymous@ccsd.cnrs.fr.invalid (Clémence Frioux) 07 Jun 2023

    https://hal.inrae.fr/hal-04120888v1
  • [hal-04409251] Community-scale models of microbiomes: articulating metabolic modelling and metagenome sequencing

    Building models is essential for understanding the functions and dynamics of microbial communities. Metabolic models built on genomescale metabolic network reconstructions (GENREs) are especially relevant as a means to decipher the complex interactions occurring among species. Model reconstruction increasingly relies on metagenomics, which permits direct characterisation of naturally-occurring communities that may contain organisms that cannot be isolated or cultured. In this review, we provide an overview of the field of metabolic modelling and its increasing reliance on and synergy with metagenomics and bioinformatics. We survey the means of assigning functions and reconstructing metabolic networks from (meta-)genomes, and present the variety and mathematical fundamentals of metabolic models that foster the understanding of microbial dynamics. We emphasise the characterisation of interactions and the scaling of model construction to large communities, two important bottlenecks in the applicability of these models. We give an overview of the current state of the art in metagenome sequencing and bioinformatics analysis, focusing on the reconstruction of genomes in microbial communities. Metagenomics benefits tremendously from third generation sequencing, and we discuss the opportunities of long read sequencing, strain-level characterisation, and eukaryotic metagenomics. We aim at providing algorithmic and mathematical support, together with tool and application resources, that permit bridging the gap between metagenomics and metabolic modelling.

    ano.nymous@ccsd.cnrs.fr.invalid (Klara Cerk) 22 Jan 2024

    https://inria.hal.science/hal-04409251v1
  • [hal-04425626] Metagenomic assembly of complex ecosystems with highly accurate long-reads

    Understanding the poorly characterized communities of soil and rhizosphere microbiota is crucial for plant growth and health. In line with this goal, the MISTIC project seeks to develop methodologies for modeling microbial community dynamics. My thesis contributes to this effort by specifically addressing the challenge of assembling genomes from these complex communities using highly accurate long reads.

    ano.nymous@ccsd.cnrs.fr.invalid (Nicolas Maurice) 30 Jan 2024

    https://inria.hal.science/hal-04425626v1
  • [hal-04088301] Revealing the dynamics and mechanisms of bacterial interactions in cheese production with metabolic modelling

    Cheese organoleptic properties result from complex metabolic processes occurring in microbial communities. A deeper understanding of such mechanisms makes it possible to improve both industrial production processes and end-product quality through the design of microbial consortia. In this work, we caracterise the metabolism of a three-species community consisting of Lactococcus lactis, Lactobacillus plantarum and Propionibacterium freudenreichii during a seven-week cheese production process. Using genome-scale metabolic models and omics data integration, we modeled and calibrated individual dynamics using monoculture experiments, and coupled these models to capture the metabolism of the community. This digital twin accurately predicted the dynamics of the community, enlightening the contribution of each microbial species to organoleptic compound production. Further metabolic exploration raised additional possible interactions between the bacterial species. This work provides a methodological framework for the prediction of community-wide metabolism and highlights the added-value of dynamic metabolic modeling for the comprehension of fermented food processes.

    ano.nymous@ccsd.cnrs.fr.invalid (Maxime Lecomte) 22 Nov 2023

    https://hal.inrae.fr/hal-04088301v2
  • [hal-04423917] Exploring and quantifying the soil genetic diversity captured by long and short-read shotgun metagenomic sequencing

    The soil microbiome remains poorly understood, but unraveling its genetic diversity is essential, given the pivotal functions primarily mediated through their protein arsenal [1]. Although short-read (SR) shotgun metagenomics provided interesting insights into microbiome gene diversity, it fell short in delivering comprehensive microbial genome reconstructions. Metagenome-assembled genomes (MAGs) obtained from SR often yield fragmented assemblies and incomplete gene sets (over 90% contigs <1kb and thus unusable for gene prediction) [2]. Using PacBio HiFi sequencing, we previously obtained long-reads (N50: 6kb) from tunnel culture soil metagenomes, surpassing the contig length of publicly available short-read metagenomes (N50: 1kb) [2]. Even if a substantial part of the reads remain unassembled, we succeeded in reconstructing dozens of MAGs, which further enhanced reads contiguity encompassing bacterial, archaeal, and viral genomes from terrestrial environments. To compare more comprehensively LR and SR approaches, we generated ultra-high depth short-read sequencing on the same soil sample. Although with SR technology contigs were substantially shorter, ultra-high depth sequencing seem to have captured a higher diversity of taxa than LR. However, this impression needs to be confirmed by an independent metabarcoding method. HiFi LR sequencing exhibits significant potential in elucidating the complexity of microbial genome reconstruction. Nevertheless, several critical considerations remain to be addressed such as the sequencing depth required to capture and reconstruct a significant representation of the real biodiversity of soil microbiomes.

    ano.nymous@ccsd.cnrs.fr.invalid (Carole Belliardo) 29 Jan 2024

    https://hal.science/hal-04423917v1

 

Documents à télécharger

Voir aussi

Date de modification : 18 septembre 2024 | Date de création : 06 septembre 2023 | Rédaction : AgroEcoNum